Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 5250, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438488

RESUMEN

The frequency and intensity of summer extreme climate events are increasing over time, and have a substantial negative effect on plants, which may be evident in their impact on photosynthesis. Here, we examined the photosynthetic responses of Larix kaempferi and Pinus densiflora seedlings to extreme heat (+ 3 °C and + 6 °C), drought, and heavy rainfall by conducting an open-field multifactor experiment. Leaf gas exchange in L. kaempferi showed a decreasing trend under increasing temperature, showing a reduction in the stomatal conductance, transpiration rate, and net photosynthetic rate by 135.2%, 102.3%, and 24.8%, respectively, in the + 6 °C treatment compared to those in the control. In contrast, P. densiflora exhibited a peak function in the stomatal conductance and transpiration rate under + 3 °C treatment. Furthermore, both species exhibited increased total chlorophyll contents under extreme heat conditions. However, extreme precipitation had no marked effect on photosynthetic activities, given the overall favorable water availability for plants. These results indicate that while extreme heat generally reduces photosynthesis by triggering stomatal closure under high vapor pressure deficit, plants employ diverse stomatal strategies in response to increasing temperature, which vary among species. Our findings contribute to the understanding of mechanisms underlying the photosynthetic responses of conifer seedlings to summer extreme climate events.


Asunto(s)
Calor Extremo , Larix , Pinus , Plantones , Fotosíntesis
2.
Sci Rep ; 13(1): 22210, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097646

RESUMEN

Despite the importance of agroforestry parkland systems for ecosystem and livelihood benefits, evidence on determinants of carbon storage in parklands remains scarce. Here, we assessed the direct and indirect influence of human management (selective harvesting of trees), abiotic factors (climate, topography, and soil) and multiple attributes of species diversity (taxonomic, functional, and structural) on aboveground carbon (AGC) stocks in 51 parklands in drylands of Benin. We used linear mixed-effects regressions and structural equation modeling to test the relative effects of these predictors on AGC stocks. We found that structural diversity (tree size diversity, HDBH) had the strongest (effect size ß = 0.59, R2 = 54%) relationship with AGC stocks, followed by community-weighted mean of maximum height (CWMMAXH). Taxonomic diversity had no significant direct relationship with AGC stocks but influenced the latter indirectly through its negative effect on CWMMAXH, reflecting the impact of species selection by farmers. Elevation and soil total organic carbon content positively influenced AGC stocks both directly and indirectly via HDBH. No significant association was found between AGC stocks and tree harvesting factor. Our results suggest the mass ratio, niche complementarity and environmental favorability as underlying mechanisms of AGC storage in the parklands. Our findings also highlight the potential role of human-driven filtering of local species pool in regulating the effect of biodiversity on AGC storage in the parklands. We conclude that the promotion of AGC stocks in parklands is dependent on protecting tree regeneration in addition to enhancing tree size diversity and managing tall-stature trees.


Asunto(s)
Ecosistema , Árboles , Humanos , Árboles/fisiología , Bosques , Carbono , Biodiversidad , Suelo , Biomasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...